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Introduction 
DARWIN is a NASA developed, Internet-based system 
for enabling aerospace researchers to securely and re- 
motely access and collaborate on the analysis of aero- 
space vehicle design data, primarily the results of wind- 
tunnel testing and numeric (e.g., computational fluid- 
dynamics) model executions. DARWIN captures, stores 
and indexes data; manages derived knowledge (such as 
visualizations across multiple datasets); and provides an 
environment for designers to collaborate in the analysis 
of test results. DARWIN is an interesting application 
because it supports high-volumes of data, integrates 
multiple modalities of data display (e.g., images and 
data visualizations), and provides non-trivial access 
control mechanisms. DARWIN enables collaboration 
by allowing not only sharing visualizations of data, but 
also commentary about and views of data. 

We are currently developing D3, the third genera- 
tion of DARWIN [SI. Earlier versions of DARWIN 
were characterized by browser-based interfaces and a 
hodge-podge of server technologies: CGI scripts, ap- 
plets, PERL, and so forth. But browsers proved difficult 
to control, and a proliferation of computational mecha- 
nisms proved inefficient and difficult to maintain. D3 
substitutes a pure-Java approach for that medley: A 
Java client communicates (though RMI over HTTPS) 
with a Java-based application server. Code on the 
server accesses information from JDBC databases, dis- 
tributed LDAP security services, and a collaborative 
information system (CORE, a successor of PostDoc 
[l].) D3 is a three tier-architecture, but unlike “E- 
commerce” applications, the data usage pattern sug- 
gests different strategies than traditional Enterprise Java 
Beans-we need to move volumes of related data to- 
gether, considerable processing happens on the client, 
and the “business logic” on the server-side is primarily 
data integration and collaboration. With D3, we are 
extending DARWIN to handle other data domains and 
to be a distributed system, where a single login allows a 
user transparent access to test results from multiple 
servers and authority domains. 

Background 
Aerospace designers and engineers use DARWIN to 
understand and remotely access the results of experi- 
mental testing and numerical model analyses of aero- 
space vehicle designs, principally aircraft in NASA’s 
wind tunnels. Wind tunnel tests place a physical model 
of a proposed aircraft in an enclosed space, blow 100- 
600 mile-per-hour winds over the surface of that model, 
and measure performance attributes such as lift, drag 
and yaw. Sometimes lasting up to several months, a 
wind tunnel experiment may measure close to 50,000 
points, each recording up to a thousand variables. Nu- 
merical model analyses employ techniques such as 
computational fluid dynamics to determine these physi- 
cal performance properties from virtual designs (e.g., 
CAD drawings.) Numerical solutions are computation- 
ally resource intensive and can generate gigabyte-size 
results. 

DARWIN provides not only distributed, near- 
real-time remote access to large volumes of data, but 
also tools for data analysis, visualization, and collabora- 
tion. DARWIN deals with such “real-world’ issues as 
security requirements and the semantic inconsistency 
endemic to extending legacy systems (Le. naming con- 
ventions and variations in meaning). 

The DARWIN system allows its users to access 
aerospace data through a collection of displays and to 
perform various analysis functions on that data. In a 
typical session, a DARWIN user could perform the 
following tasks: 

Establish security context. On connecting to 
the DARWIN web server, the user logs in with 
her name and password. Our facility serves a 
national community of aerospace designers. 
Such customers are unenthusiastic about grant- 
ing competitors access to data on their proprie- 
tary designs. To address these concerns, all 
communications with the web server take place 
over secure http. Users are authenticated not 
only by password, but also by IP address. 

Browse. The DARWIN home page provides 
overview screens for the available wind tunnel 
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tests and computational fluid 
dynamics solutions. The only tests 
the user sees are those for which he 
or she is authorized. From these 
screens the user can see which tests 
are in the system, get basic 
information about those tests, and 
check the test’s bulletin board for 
messages and related files. Figure 1 
shows an example DARWIN home 
page with wind tunnel tests 
displayed. 

An in-depth look at the data can be 
performed by creating a dataset 
review. The user selects the data of 
interest via the browsing screens and 
launches the review screen. The 
review consists of two types of 
tabular displays (data summary table 
and sequence table) and a set of 

Figure 1: DARWIN Home page with wind tunnel tests displayed. 

plots. The user can choose which variables are 
displayed in the tables and in the plots. Addi- 
tional data points can be added to a review by 
invoking the query screen and searching for 
points of interest. Figure 2 shows a three- 
dimensional plot of some wind-tunnel data. 

Having selected the data to review and config- 
ured the tables and plots, the user can save her 
work into a DARWIN dataset. This structure 
retains enough information for DARWIN to 
recreate the review screen at a later time. Data- 
sets are managed in a database on a per user ba- 
sis. 

Interact with the world. DARWIN is not just 
a database retrieval and presentation mecha- 
nism. It also provides two kinds of interaction: 
real-time monitoring of in-progress testing and 
collaboration with colleagues. While a wind 
tunnel test is in progress, users can monitor its 
progress via the live screen. The live screen has 
the same tables and plots as the review plus 
current status indicators, message board, and a 
shared files “shelf.” The tables and plots are 
updated every 20 seconds to show the latest 
collected data. Figure 3 shows the live screen in 
operation. 

Wind tunnel test data are grouped into “time instants” 
or points. For each point, the wind tunnel data acquisi- 
tion system collects a large amount of information 
about conditions in the tunnel and on the model. For 
example, pressure taps on the model can reveal detail 
about the flow characteristics at specific regions on the 

model, and pressure sensitive paint can produce a con- 
tinuous pressure surface map. Numeric data is stored on 
the file system, and pressure sensitive paint results are 
recorded with a camera and stored in image files. 
DARWIN deals with a variety of file types, both text 
and binary. 

Wind tunnel test data are hierarchical. The set of 
measurements about a model are a test. A given test can 
be checked for different configurations (e.g., orienta- 
tion of the model and specification and arrangement of 
sensors), a given configuration can be checked for a 
specific run, and for a run, data is collected at points. 
There is data associated with each of these levels; 
points have both the greatest volume and least regular 
data. 

The large volume of data associated with actual 
tests has led to a design incorporating a meta-database. 
This database is a relational database that stores infor- 
mation about the test, configurations, runs and points. 
The meta-database holds both data applicable to the 
experiment as a whole and variables on which users are 
likely to want to search. For example, tunnel conditions 
such as wind speed, temperature and angle of attack of 
the model are data applicable to the entire experiment. 
Likewise, overall lift and drag apply to the model as a 
whole. Because users may want to find, for example, 
the data point with the greatest drag, that information is 
also included in the meta-database. The data contained 
in files produced by specialized measurement systems 
are considered detail data. The meta-database stores the 
locations of these files, and the time points with which 
they are associated. However, to display this data, the 
interface needs to retrieve the actual file. 
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I Figure 2: The DARWIN Review Screen showing a 3-dimensional plot 

Although DARWIN is an aerospace application, it 
is also a generic application. What DARWIN does is 
(1) present to distributed users large volumes of both 
numeric and image data gathered from multiple sources 
and (2) provide visualization tools for examining the 
data, collaboration tools for working cooperatively with 
the data, and real-time mechanisms for interacting with 
ongoing activities. The DARWIN architecture and ex- 
perience thus generalizes across domains with similar 
(and simpler) problems. One of the goals of the D3 de- 
velopment is to enable to application of the DARWIN- 
like systems to domains besides aerospace vehicle de- 
sign. 

Design of D3 
Critical requirements of D3 include the desire to per- 
form complex interactive visualizations on the client, to 
allow users to incorporate their own visualizations of 
data, to access and download select portions of the raw 
data, to avoid the delay associated with dynamically 
downloading applets, to overcome. the interface limita- 
tions of browsers, and to enforce access control rules 
for data and studies. To understand these issues, it helps 
to begin by elaborating the D3 meta-data model. 

The D3 meta-data model is made up of models, 
tests, configurations, runs and points. These are main- 
tained in a database as relational tables, where the row 
identifier (primary key) of a test is a foreign key in the 
configuration table, the row identifier of a configuration 
a foreign key of the run table, and so forth. While there 

is some commonality among tests 
about what the other columns of 
these tables ought to be, there is 
sufficient variety in the meta- 
information needed about points that 
many point attributes are stored in a 
table of <point-id, property-name, 
value> triples. The actual data 
archived from a wind tunnel test is 
also available for access and analysis 
by the user; the location and display 
attributes of the raw data are stored in 
the meta-data model. A good exam- 
ple of this is the pressure tap data. 
For almost all wind tunnel tests, 
pressure taps are used to measure the 
pressure on the aircraft at given phy- 
sical points. This data is stored as an 
uncalibrated set of analog measure- 
ments in a file. The actual calibration 
file is also stored, and the location of 
the pressure tap is stored in a third 
file. All that is stored in the D3 data 
model is the time instant a instru- 

ment-type of “pressure tap” was recorded, the file loca- 
tions of the data, and the particular protocol used to 
access the remote files. The “business logic” of D3 is 
required to know that (based upon the instrument-type) 
the three files need to be retrieved, parsed, integrated, 
and display in a default style. 

At this point D3 uses another model to manage 
“reviews” of the data. These “reviews” can be thought 
of as similar to the concept of database views except 
that in the instance of D3/DARWIN, not all of the data 
resides in a relational database. Another aspect of re- 
views are that they can be collected and personalized 
into “studies”. Studies are objects unto themselves, 
which can have arbitrary relationships with other stud- 
ies and external files. (The current organization of stud- 
ies is in a classical directory/file tree, though we plan to 
experiment with other organizations.) Client applica- 
tions want to see this organization of data, and can use 
the data in unpredictable ways-for example, display- 
ing a table of particular attributes of a set of configura- 
tions, or plotting the results at selected points. In D3, 
we are integrating CORE, the next generation of Post- 
Doc [ I], an in-house developed document management 
system. This system that already manages documents, 
W s  and data files in a hierarchical directory struc- 
ture will be used to similarly manage and share the D3 
studies and reviews. CORE is discussed below. 

Access control for wind tunnel data is currently 
centered on tests. That is, one can see all configuration, 
run and point data about a test if and only if one is al- 
lowed access to that test. However, the data for all tests 
are mixed in the same tables. Security requirements 
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therefore dictate that client programs 
cannot be allowed to run random 
queries at the test, configuration, run 
and point tables. Studies must inherit 
the arbitrary access control rela- 
tionships of the meta-data. 

The most straightforward way 
to approach this problem is to give 
the client application the illusion of 
having resident the (access-control- 
limited) wind tunnel data, and 
arranging “behind the scenes” to 
fetch the data from the server as 
needed. Wind tunnel data is read- 
only; studies and reviews can be 
both read and written. In D3, the 
client keeps a cache of the informa- 
tion it has learned. The commu- 
nication between the client and 
server is phrased in terms of general 
queries and responses that include 
collections of arbitrary “facts” to be 
filled into the client objects in 
anticipation of their use. 

~ This behind-the-scenes fetching 
needs to be more efficient than 
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Figure 3: Live Screen. DARWIN also provides several collaboration 
mechanisms for keeping in touch with team members. Users can post 

messages and files associated with a particular test and can define mail 
groups for sending group email and tracking the threaded conversations. 

getting single items at a time. To display a table of ten 
attributes of twenty items, we don’t want to make 200 
calls from the client to the server. Requests need to be 
generated that anticipate the data requirements of the 
client. Examples of mechanisms for doing this would 
include having the client explicitly ask for the data 
needed (“I know I’m filling in this table, so I’ll get all 
the data for the table at once.”), provide the context of a 
request (“Here’s the stuff I’m working on now: the ob- 
jects and columns. Give me what I need.”) or having 
the server “learn” the access patterns of clients (“In this 
situation, what’s usually asked for next is the following. 
Send it ahead.”) 

Currently the server logic has a straightforward 
job. Its function is to get data from the databases and 
remote file stores in response to client queries, integrate 
and or synthesize client data, vet it against the permis- 
sions of the particular user, and encode it for transmis- 
sion to the client. Since vetting is required, client re- 
quests are made in terms of the “full external name” of 
objects (e.g., “test 43, configuration 12, run 5”). The 
server keeps a cache that maps such names to primary 
keys (that is, in this example, the row identifier of that 
run). Elements in the cache for a particular user need no 
other security; elements not in the cache are vetted for 
access. (This mechanism also allows the client to save 
its state in whatever way it likes, using the full names of 
objects to restore another session.) Eventually, the 
server will have to manage the “distributed data” prob- 
lem of queries that can refer to more than one database 

at more than one location, and will needed expended 
logic to handle more complex tasks, such as the instiga- 
tion of a complementary numerical analysis when ap- 
propriate conditions are met in an experimental test. 

The overall architecture of D3 is illustrated in 
Figure 4: a client that sends requests to a server. That 
server communicates with a variety of backend ele- 
ments: a database of wind tunnel test results, a file sys- 
tem of elements such as pressure-sensitive-paint images 
or data files, a meta-database that points to these files, 
an LDAP server storing user authentication and access 
privilege information, and a collaborative system for 
sharing “studies.” What’s interesting about this archi- 
tecture is both its resemblance to classical three-tiered 
internet applications and its differences. The classic 
three-tiered architecture has (1) a thin client that com- 
municates with a (2) web server; the web server re- 
trieves and stores information on (3) the database. The 
server sends HTML (or XML) pages to the client. The 
client is just an interpreter of the “commands” on these 
pages. The server incorporates the “business logic” of 
the application. In the D3 model both the server and the 
client have the “business logic”, distributed to leverage 
client-side processing. Additionally, D3 has an addi- 
tional layer below the database, where multiple data 
servers may retain control and storage of the raw data 
files. The client is thick, and drives the conversation 
based on its needs. The client may request multiple files 
from multiple data servers, the database and the col- 
laborative systems, and display them however it likes. 
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The current fashion is to implement the server in a 
three-tier architecture these days as an Enterprise Java 
Beans server, relying on ETB to manage the persistence 
of “bean objects;” retrieving them from the database, 
caching them on the server, and even providing a public 
persona for them. 

We investigated the EJB approach but rejected it 
for now. EJB seems particularly appropriate for appli- 
cations that deal with thin clients (for example, a web 
browser), handle a row of the database at a time (for 
example, the description of a single item in a commer- 
cial catalog), where many rows are of common interest 
(for example, when many people want to order the 
same thing), where there is some useful processing to 
be done on the server (for example, checking the order 
consistency and recommending other things to buy). 
Our thick client needs lots of data (for example, exam- 
ining a spreadsheet-sized data collection or graphical 
numeric visualization), can’t be allowed external access 
to data objects without vetting, and needs to have data 
sent to it in anticipation of future requests. On the other 
hand, having passed the data to the client, the server 
could be less likely to need it again (The client is keep- 
ing its own cache. It remains to be seen if simultaneous 
examination of the same wind tunnel data by different 
clients will merit a server-side data cache.) Relying on 
the EJB server to cache all of the user requested data on 
the server could thus be an unneeded overhead. As- 
sessment of the D3 prototype usage will help determine 
the requirements for server caching. 

Core 
CORE [4] (Complex Object 
Relationship Engine) is the next 
generation of PostDoc. It is designed 
to handle continuous and incremental 
user enhancement of knowledge data, 
such as metadata about stored docu- 
ments and archived mailing list 
communication, user extension of the 
data model, and, for workflow 
applications, user contributed appli- 
cation logic. 

A key feature of CORE is ad- 
vanced access control and authentica- 
authentication mechanisms. 
Databases typically partition access 
control on the table, object, or similar 
large scale. This level of access 
control is insufficient in an envi- 
ronment where the atom of 
manipulation by collaborators may be 
individual metadata attributes. For 
example, a document may have a 

variety of attached attributes, such as owner, name, 
keywords, description, and related documents. In a re- 
view process, an additional attribute of “review rating” 
may be addedmanipulated by the reviewers of the 
document, who may have privileges to manipulate the 
document’s other attributes. The important element 
here is to provide variable granularity--control at the 
appropriate level for each kind of data. 

Few open standards exist for access control and 
management architectures. However, an emerging stan- 
dard has been established by the Web Distributed Au- 
thoring and Versioning [9] Working Group that pro- 
vides the level of control and flexibility required by the 
redesigned PostDoc environment. Also, WebDAV is an 
excellent target communication mechanism: the stan- 
dards being developed are for client-server communica- 
tions for web servers. 

Related Work 
Within NASA several systems have been developed 
with remote access to aerospace data. In 1994, NASA 
Ames Research Center developed a system called re- 
mote access wind tunnel (RAWT) [51. In 1995, NASA 
Glenn Research Center modified this concept to create 
remote access control room (RACR). Both systems 
were Unix only and used a commercial whiteboard pro- 
gram called InPerson for Silicon Graphics machines 
and X-windows. No database of information was de- 
veloped, as the emphasis was remote access and col- 
laboration. 

Similarly, several data and documentation tools 

Database I J - http, ftp. webdav, 
iiop, rcp, jdbc, ... 

Figure 4. The D3 architecture. 
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were developed at NASA Langley Research Center and 
NASA Ames. These were PrISM, and ADAPT at Lang- 
ley and PostDoc [ 11 at Ames. PrISM collected the wind 
tunnel data into a database on a test by test basis and 
provided a robust query capability to download the re- 
sults to the user. No presentation or naming consistency 
was developed under PrISM. ADAPT and PostDoc 
were similar in that they were early web-based docu- 
ment management systems. ADAPT focused upon cre- 
ating secure access to encrypted documents. Any data 
or documents were stored as an encrypted file with the 
user required to have a decryption helper application for 
the web browser to decrypt data to the desktop. Post- 
Doc emphasized capturing and translating documents 
into Adobe PDF files to broaden access to many plat- 
forms. PostDoc originally only addressed security 
through a user identifier and password scheme. It now 
includes transport layer encryption over HTTPS con- 
nections. 

Of course, use of the Internet for database access, 
collaboration, and real-time monitoring has many ante- 
cedents. We mention four examples. Evans and Rogers 
[2] report on using Java applets and CORBA to reim- 
plement (parts of) an existing multi-user WWW appli- 
cation, replacing the existing CGI scripts. They found 
the appletICORl3A combination to be better at perform- 

, ing client-side applications, to be easier to maintain, to 
be simpler to program (because of the ability to retain 
server-side state), to be more straight forward to deploy, 
and to provide greater responsiveness. 

Ly [6] describes Netmosphere ActionPlan, a web- 
enabled project management product. Architecturally, 
ActionPlan is a pair of client applets linked to a Java- 
language server. A key element of Netmosphere was 
the real-time, selective notification mechanism for 
keeping information synchronized. 

Itschner, Pommerell and Rutishauser [3] report on 
the GLASS system, which uses internet technology to 
monitor remote embedded systems. GLASS proxies 
accumulate data from embedded system monitoring 
devices and store this information on the database of a 
server. Client applications, running in browsers with 
Java applets, retrieve this data through CGI scripts on 
the server. 

Tesoriero and Zelkowitz [7] have developed the 
WebME system, which uses a mediating query proces- 
sor, metadata database, and wrappers on the informa- 
tion repositories to direct queries to the appropriate 
databases. 

Closing Remarks 

the third generation of the DARWIN system, based on a 
multi-tier model involving a “thick” client, layers of 
data access, and complex access-control on the server. 
Critical issues in this development include efficiently 
moving large amounts of data from the data stores to 
the client, ensuring the access-control rules are fol- 
lowed, and providing the users with an appropriate col- 
laborative environment. 
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